One-Time Programmable, Linear-Taper Digital Potentiometers

Applications
Mechanical Potentiometer Replacement Products Using One-Time Factory Calibration

Pin Configurations

μ Max is a registered trademark of Maxim Integrated Products, Inc.

Abstract

\section*{General Description}

The MAX5427/MAX5428/MAX5429 linear-taper digital potentiometers function as mechanical potentiometers, but replace the mechanics with a simple 2-wire digital interface. These digital potentiometers are unique in that they have an optional one-time programmable feature that either sets the wiper's power-on reset (POR) position to a user-defined value, or the wiper can be set and the interface disabled to prevent further adjustment. The MAX5427 has an end-to-end resistance of $100 \mathrm{k} \Omega$, the MAX5428 a resistance of $50 \mathrm{k} \Omega$, and the MAX5429 a resistance of $10 \mathrm{k} \Omega$. All these devices have 32 wiper positions, operate from a single 2.7 V to 5.5 V supply, and use less than $1.5 \mu \mathrm{~A}$ (max) static supply current. The MAX5427/MAX5428/MAX5429 are available in 8 -pin thin QFN and $\mu \mathrm{MAX}{ }^{\circledR}$ packages. Each device is guaranteed over the extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Max is a registered trademark of Maxim Integrated Products,

Features

- Wiper Position Stored After One-Time Fuse Programming
- User-Defined Power-On Reset Position
- 35ppm/ ${ }^{\circ} \mathrm{C}$ End-to-End Temperature Coefficient and 5ppm/ ${ }^{\circ} \mathrm{C}$ Ratiometric Temperature Coefficient
- 32 Tap Positions
- Tiny 8-Pin Thin QFN and μ MAX Packages
- Ultra-Low $1.5 \mu \mathrm{~A}$ (max) Static Supply Current
- 2.7V to 5.5V Single-Supply Operation
- Wiper Position Programmed Through Simple 2-Wire Serial Interface
- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ End-to-End Resistances

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	R (k $\Omega \mathbf{)}$
MAX5427EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	100
MAX5427ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Thin QFN-EP*	100
MAX5428EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	50
MAX5428ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Thin QFN-EP*	50
MAX5429EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	10
MAX5429ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Thin QFN-EP*	10

Functional Block Diagram

One-Time Programmable, Linear-Taper Digital Potentiometers

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to GND ...-0.3V to +6.0 V
VPP to GND..-0.3V to +12.0 V
All Other Pins to GND. -0.3 V to (VDD +0.3 V)
Input and Output Latchup Immunity \qquad $\pm 200 \mathrm{~mA}$ Maximum Continuous Current into H, L, and W

MAX5427	$\pm 1.5 \mathrm{~mA}$
MAX5428	$\pm 1.5 \mathrm{~mA}$
MAX5429	

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
8 -Pin μ MAX (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	362 mW
8-Pin QFN-EP (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	$\left.{ }^{\circ} \mathrm{C}\right)1951 \mathrm{~mW}$
Operating Temperature Range- $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Junction Temperature .. $+150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{GND}, \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=$ $5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE						
Resolution			32			Taps
End-to-End Resistance		MAX5427	75	100	125	k Ω
		MAX5428	37.5	50	62.5	
		MAX5429	7.5	10	12.5	
End-to-End Resistance Tempco	TCR			35		ppm/ ${ }^{\circ} \mathrm{C}$
Ratiometric Resistance Tempco		MAX5427/MAX5428		5		ppm/ ${ }^{\circ} \mathrm{C}$
		MAX5429		10		
Integral Nonlinearity	INL	Potentiometer configuration, no load, Figure 1			± 1	LSB
Differential Nonlinearity	DNL	Potentiometer configuration, no load, Figure 1			± 1	LSB
Full-Scale Error		Potentiometer configuration, no load, Figure 1			-0.5	LSB
Zero-Scale Error		Potentiometer configuration, no load, Figure 1			+0.5	LSB
Wiper Resistance	Rw	$\begin{aligned} & \text { MAX5427 IW }=20 \mu \mathrm{~A} ; \mathrm{MAX5428} \mathrm{I} \mathrm{~W}=40 \mu \mathrm{~A} ; \\ & \text { MAX5429 IW }=200 \mu \mathrm{~A} \end{aligned}$		100	240	Ω
DIGITAL INPUTS ($\overline{\mathbf{C S}}, \mathrm{U} / \overline{\mathbf{D}})$						
Input High Voltage	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
Input Low Voltage	VIL				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Input Current	IIN			± 0.1	± 1	$\mu \mathrm{A}$
Input Capacitance	CIN			5		pF
TIMING CHARACTERISTICS (Note 2)						
U/ $\overline{\mathrm{D}}$ Mode to $\overline{\mathrm{CS}}$ Setup	tcu	Figures 2, 3	50			ns
$\overline{\overline{C S}}$ Hold to U/[D Mode	tcl	Figures 2, 3	50			ns
U/ $\overline{\mathrm{D}}$ Step Hold to $\overline{\mathrm{CS}}$	tic	Figures 2, 3	0			ns
U/D Step Low Time	t/L	Figures 2, 3	100			ns

One-Time Programmable, Linear-Taper Digital Potentiometers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{GND}, \mathrm{V}_{H}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=$ 5.0V, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
U/D Step High Time	$\mathrm{tIH}^{\text {H}}$	Figures 2, 3	100			ns
Wiper Switching Time	tıw	$C_{L}=0 p F$, Figures 2, 3		100		ns
VPP Rising Edge to $\overline{\mathrm{CS}}$ Falling Edge	tPC	Figure 4	1			ms
$\overline{\mathrm{CS}}$ Falling Edge to VPP Falling Edge	tcP	Figure 4	5			ms
$\overline{\mathrm{CS}}$ Step Low Time	tcL	Figure 4	5			ms
$\overline{\mathrm{CS}}$ Step High Time	tch	Figure 4	5			ms
VPP Falling Edge to $\overline{\mathrm{CS}}$ Rising Edge	tPH	Figure 4	1			ms
U/何 Frequency	fu/DMAX				5	MHz
Power-Up Time	tup	(Note 3)			1	ms
Output Settling Time	tSETTLE	$100 \mathrm{k} \Omega$ variable resistor configuration, $C L=10 p F$, Figure 1	1			$\mu \mathrm{s}$
		$100 \mathrm{k} \Omega$ potentiometer configuration, $C L=10 p F$, Figure 1	0.25			
POWER SUPPLY						
Supply Voltage	VDD		2.7		5.5	V
Static Supply Current	IDD	(Note 4)			1.5	$\mu \mathrm{A}$
Programming Voltage	VPP	$\mathrm{T}_{\mathrm{A}}<+50^{\circ} \mathrm{C}$	10.45		11.55	V
		$\mathrm{T}_{\mathrm{A}} \geq+50^{\circ} \mathrm{C}$	11		11.55	
Programming Current	IpP	V PP $=11 \mathrm{~V}$	5			mA

Note 1: All devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and are guaranteed by design for $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Note 2: Digital timing is guaranteed by design, not production tested.
Note 3: Power-up time is the period of time from when the power supply is applied until the serial interface is ready for writing.
Note 4: Digital inputs $\overline{C S}$ and U / \bar{D} are connected to $G N D$ or $V_{D D}$.

Figure 1. Potentiometer/Variable-Resistor Configuration

One-Time Programmable, Linear-Taper Digital Potentiometers

$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Typical Operating Characteristics

One-Time Programmable, Linear-Taper Digital Potentiometers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

PIN	NAME	FUNCTION
1	W	Wiper Connection
2	$\overline{\mathrm{CS}}$	Chip-Select Input. A high-to-low $\overline{\mathrm{CS}}$ transition determines the mode: increment if $\mathrm{U} / \overline{\mathrm{D}}$ is high, or decrement if $U / \overline{\mathrm{D}}$ is low. $\overline{\mathrm{CS}}$ is also used for one-time programming (see the One-Time Programming section).
3	VDD	Power-Supply Voltage
4	GND	Ground
5	VPP	Programming Voltage for One-Time Programming. Connect VPP to 10 V supply when one-time programming the device. For normal operation, connect to ground or let float.
6	U/D	Up/ $\overline{\text { Down }}$ Control Input. With $\overline{\mathrm{CS}}$ low, a low-to-high transition increments or decrements the wiper position.
7	L	Low Terminal of Resistor
8	H	High Terminal of Resistor

Detailed Description

The MAX5427/MAX5428/MAX5429 are 100k $\Omega / 50 \mathrm{k} \Omega$ / $10 \mathrm{k} \Omega$ (end-to-end resistance) digitally controlled potentiometers. They have 32 tap positions that are accessible to the wiper along the resistor array between H and L .
The wiper (W) position is adjusted sequentially through the tap positions using a simple 2-wire interface. These digital potentiometers have an optional one-time programmable feature that sets the POR position of the wiper. The 2-wire interface can then be disabled, permanently preventing unwanted adjustment.

Digital Interface Operation

The MAX5427/MAX5428/MAX5429 have two modes of operation when the serial interface is active: increment
mode and decrement mode. The serial interface is only active when $\overline{\mathrm{CS}}$ is low.
The $\overline{\mathrm{CS}}$ and $U / \overline{\mathrm{D}}$ inputs control the position of the wiper along the resistor array. When $\overline{\mathrm{CS}}$ transitions from high to low, the part goes into increment mode if U / \bar{D} is high (Figure 2), and into decrement mode if U / \bar{D} is low (Figure 3). Once the mode is set, the device remains in that mode until $\overline{\mathrm{CS}}$ goes high. A low-to-high transition at the U/D increments or decrements the wiper position depending on the current mode.
When the $\overline{\mathrm{CS}}$ input transitions to high (when serial interface is inactive) and U / \bar{D} is low, the wiper increments or decrements one position in accordance with the state of U / \bar{D} when $\overline{\mathrm{CS}}$ went low. If $U / \overline{\mathrm{D}}$ is high when $\overline{\mathrm{CS}}$ transitions to high, the wiper remains in the same position.

One-Time Programmable, Linear-Taper Digital Potentiometers

Figure 2. Increment Mode Serial Interface Timing Diagram

Figure 3. Decrement Mode Serial Interface Timing Diagram

The value of the counter is then stored and the wiper position is maintained.
The wiper performs a make-before-break transition, ensuring that there is never an open circuit during a transition from one resistor tap to another. When the wiper is at either end (max/min) of the resistor array, additional transitions in the direction of the endpoint do not change the counter value (the counter does not wrap around).

One-Time Programming

The factory-set default position of the wiper on powerup is tap 16. However, the power-up position can be changed once using the one-time programming feature. After the wiper is moved to the desired position, the programming sequence is initiated by setting $U \overline{\bar{D}}$ high, applying 11 V to VPp, and then taking $\overline{\mathrm{CS}}$ low. Five pulses on $\overline{\mathrm{CS}}$ (consisting of $\overline{\mathrm{CS}}$ starting from low and going high for t CH and then low for tcL) program the device (Figure 4). The programming voltage should then be taken to zero. After the device is programmed, VPP can be set to zero or be allowed to float. The wiper position is still adjustable, but always returns to this programmed position on power-up.

If the intent is to program the device to a specific wiper position and not to allow further adjustments, then six programming pulses are required (as opposed to five), as shown in Figure 4. The sixth pulse locks the wiper position and disables the serial interface. This also allows U/D and $\overline{\mathrm{CS}}$ to float without any increase in supply current. Once the lockout bit is set, no further adjustment to the potentiometer is possible, effectively changing the potentiometer into a fixed resistor-divider (Table 1).

Table 1. One-Time Programming Options

MODE	POWER-ON RESET WIPER POSITION	ADJUSTABLE WIPER
Factory Default (Unprogrammed)	Tap 16	Yes
Programmed (5 Programming Pulses)	Programmed position	Yes
Lock-Bit Set (6 Programming Pulses)	Programmed position	No

One-Time Programmable, Linear-Taper Digital Potentiometers

Figure 4. One-Time Program Mode Serial Interface Timing Diagram
It is recommended that the user either use six $\overline{\mathrm{CS}}$ pulses (convert to a fixed voltage-divider) or five pulses (program the initial power-up value of the device, but still be able to adjust the wiper). If the device is programmed with five pulses and later it is desired to disable the interface (convert to a fixed voltage-divider), then care must be taken to ensure that the wiper is in the same position as it was originally set to (when programmed with five pulses). The full six programming pulses must be applied. If the wiper is not in its original programmed position prior to disabling the interface, the final locked-out position is correct. Note that once the six-pulse program occurs, no further programming is possible.
The VPP power supply must be able to source at least 5 mA and have a good transient response. The VPP power supply should be decoupled with $22 \mu \mathrm{~F}$ and have no more than $250 \mu \mathrm{H}$ of inductance and/or 40Ω of parasitic resistance between the capacitors and the device (Figure 5). The device does not require decoupling capacitors near VPP, provided the above guidelines are met.

Figure 5. VPP Power-Supply Connection

Chip Information

TRANSISTOR COUNT: 2270
PROCESS: BiCMOS

One-Time Programmable, Linear-Taper Digital Potentiometers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

One-Time Programmable, Linear-Taper Digital Potentiometers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.	
A2	20 REF.	

PACKAGE VARIATIONS								
PKG. CODE	N	D2	E2	e	JEDEC SPEC	b	[(N/2)-1] xe	DOWNBONDS ALLOWED
T633-1	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF	NO
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF	NO
T833-1	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF	NO
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF	NO
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF	YES
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF	NO
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF	YES
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF	NO

NOTES:

1. ALL DIMENSIONS ARE in mm. ANGLES in degrees.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.

BDALLAS /VI/IKI/VI

TTLE
PACKAGE OUTLINE, $6,8,10 \& 14 \mathrm{~L}$,
TDFN, EXPOSED PAD, $3 \times 3 \times 0.80 \mathrm{~mm}$

One-Time Programmable, Linear-Taper Digital Potentiometers

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO-187C-AA.

PROPRIETARY INFORMATION			
TTLEE			
PACKAGE OUTLINE, 8L uMAX/USOP			
APPROVAL	OCUMENT Control no. $21-0036$	$\stackrel{\text { REV. }}{ }{ }^{\text {d }}$	1/1

[^0] implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

